Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542055

RESUMO

The circular economy, which attempts to decrease agricultural waste while also improving sustainable development through the production of sustainable products from waste and by-products, is currently one of the main objectives of environmental research. Taking this view, this study used a green approach to synthesize two forms of silver nanoparticles: coated silver nanoparticles with olive leaf extract (Ag-olive) and uncoated pure silver nanoparticles (Ag-pure), which were produced by the calcination of Ag-olive at 550 °C. The extract and the fabricated nanoparticles were characterized by a variety of physicochemical techniques, including high-performance liquid chromatography (HPLC), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Adult ticks (Hyalomma dromedarii) (Acari: Ixodidae) were used in this study to evaluate the antiparasitic activity of synthesized nanoparticles and extract. Furthermore, the antifungal activity was evaluated against Aspergillus aculeatus strain N (MW958085), Fuserium oxysporum (MT550034), and Alternaria tenuissiuma (MT550036). In both antiparasitic and antifungal tests, the as-synthesized Ag-olive showed higher inhibition activity than Ag-pure and olive leaf extract. The findings of this research suggest that Ag-olive may be a powerful and eco-friendly antiparasitic and antifungal agent. Ag-pure was also evaluated as a photocatalyst under sunlight for the detoxification of Eri-chrome-black T (EBT), methylene blue (MB), methyl orange (MO), and rhodamine B (RhB).


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Olea , Antifúngicos/farmacologia , Prata/química , Nanopartículas Metálicas/química , Antiparasitários , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Luz Solar , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
2.
Tissue Eng Regen Med ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520636

RESUMO

BACKGROUND: In this study an approach was made to efficaciously synthesize gold enhanced titania nanorods by electrospinning. This study aims to address effects of gold enhanced titania nanorods on muscle precursor cells. Additionally, implant related microbial infections are prime cause of various disastrous diseases. So, there is predictable demand for synthesis of novel materials with multifunctional adaptability. METHODS: Herein, gold nanoparticles were attached on titania nanorods and described using many sophisticated procedures such as XRD, SEM, EDX and TEM. Antimicrobial studies were probed against Gram-negative Escherichia coli. C2C12 cell lines were exposed to various doses of as-prepared gold enhanced titania nanorods in order to test in vitro cytotoxicity and proliferation. Cell sustainability was assessed through Cell Counting Kit-8 assay at regular intervals. A phase-contrast microscope was used to examine morphology of exposed C2C12 cells and confocal laser scanning microscope was used to quantify cell viability. RESULTS: The findings indicate that titania nanorods enhanced with gold exhibit superior antimicrobial efficacy compared to pure titania. Furthermore, newly synthesized gold-enhanced titania nanorods illustrate that cell viability follows a time and concentration dependent pattern. CONCLUSION: Consequently, our study provides optimistic findings indicating that titania nanorods adorned with gold hold significant potential as foundational resource for developing forthcoming antimicrobial materials, suitable for applications both in medical and biomedical fields. This work also demonstrates that in addition to being extremely biocompatible, titania nanorods with gold embellishments may be used in a range of tissue engineering applications in very near future.

3.
Int J Nanomedicine ; 19: 1469-1485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380146

RESUMO

Background: Nowadays, recycling agricultural waste is of the utmost importance in the world for the production of valuable bioactive compounds and environmental protection. Olive leaf bioactive compounds have a significant potential impact on the pharmaceutical industry. These compounds possess remarkable biological characteristics, including antimicrobial, antiviral, anti-inflammatory, hypoglycemic, and antioxidant properties. Methods: The present study demonstrates a green synthetic approach for the fabrication of nickel oxide nanoparticles (NiO-olive) using aqueous wasted olive leaf extract. Calcination of NiO-olive at 500°C led to the fabrication of pure NiO nanoparticles (NiO-pure). Different techniques, such as thermal gravimetric analysis (TGA), Fourier-transform infrared spectra (FTIR), ultraviolet-visible spectra (UV-Vis), X-ray diffraction (XRD), scanning electron microscopy (SEM) fitted with energy-dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM), were used to characterize both NiO-olive and NiO-pure. The extract and nanoparticles were assessed for antiparasitic activity against adult ticks (Hyalomma dromedarii) and antimicrobial activity against Bacillus cereus, Pseudomonas aeruginosa, Aspergillus niger, and Candida albicans. Results: From XRD, the crystal sizes of NiO-olive and NiO-pure were 32.94 nm and 13.85 nm, respectively. TGA, FTIR, and EDX showed the presence of olive organic residues in NiO-olive and their absence in NiO-pure. SEM and TEM showed an asymmetrical structure of NiO-olive and a regular, semi-spherical structure of NiO-pure. UV-Vis spectra showed surface plasmon resonance of NPs. Antiparasitic activity showed the highest mortality rate of 95% observed at a concentration of 0.06 mg/mL after four days of incubation. The antimicrobial activity showed the largest inhibition zone diameter of 33 ± 0.2 mm against the Candida albicans strain. Conclusion: Nanoparticles of NiO-olive outperformed nanoparticles of NiO-pure and olive leaf extract in both antiparasitic and antimicrobial tests. These findings imply that NiO-olive may be widely used as an eco-friendly and effective antiparasitic and disinfection of sewage.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Olea , Antiparasitários , Nanopartículas Metálicas/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
4.
Nanomaterials (Basel) ; 13(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37947735

RESUMO

Antibiotic resistance is rising and poses a serious threat to human health on a worldwide scale. It can make it more difficult to cure common infections, raise medical expenditures, and increase mortality. In order to combat the development of biofilms and treat fatal bacterial infections, multifunctional polymeric nanofibers or nanotextured materials with specific structural features and special physiochemical capabilities have become a crucial tool. Due to the increased antibiotic resistance of many diseases, nanofibers with antibacterial activity are essential. Electrospinning is a flexible process able to produce fine fibers with specified properties by modifying variables such as the concentration of the solution, the feed flow, and the electric voltage. Substantial advancements have been made regarding the formation of nanofibers or nanotextured materials for a variety of applications, along with the development of electrospinning techniques in recent years. Using well-defined antimicrobial nanoparticles, encapsulating traditional therapeutic agents, plant-based bioactive agents, and pure compounds in polymer nanofibers has resulted in outstanding antimicrobial activity and has aided in curing deadly microbial infections. A plethora of studies have revealed that electrospinning is an effective technique for the production of antimicrobial fibers for the environmental, biomedical, pharmaceutical, and food sectors. Nevertheless, numerous studies have also demonstrated that the surface characteristics of substrates, such as holes, fibers, and ridges at the nanoscale, have an impact on cell proliferation, adhesion, and orientation.

5.
Materials (Basel) ; 16(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37512422

RESUMO

Environmental pollution is steadily rising and is having a negative influence on all living things, especially human beings. The advancement of nanoscience in recent decades has provided potential to address this issue. Functional metal oxide nanoparticles/nanofibers have been having a pull-on effect in the biological and environmental domains of nanobiotechnology. Current work, for the first time, is focusing on the electrospinning production of Zr0.5Sn0.5TiO3/SnO2 ceramic nanofibers that may be utilized to battle lethal infections swiftly and inexpensively. By using characterizations like XRD, FT-IR, FESEM, TEM, PL, and UV-Vis-DRS, the composition, structure, morphology, and optical absorption of samples were determined. The minimum inhibitory concentration (MIC) approach was used to investigate the antibacterial activity. Notably, this research indicated that nanofibers exert antibacterial action against both Gram-positive and Gram-negative bacteria with a MIC of 25 µg/mL. Furthermore, negatively charged E. coli was drawn to positively charged metal ions of Zr0.5Sn0.5TiO3/SnO2, which showed a robust inhibitory effect against E. coli. It was interesting to discover that, compared to pure TiO2, Zr0.5Sn0.5TiO3/SnO2 nanofibers revealed increased photocatalytic activity and exceptional cyclability to the photodegradation of Rhodamine B. The composite completely degrades dye in 30 min with 100% efficacy and excellent (97%) reusability. The synergetic effects of Zr0.5Sn0.5TiO3 and SnO2 may be responsible for increased photocatalytic and bactericidal activity.

6.
Materials (Basel) ; 16(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37176198

RESUMO

Functional materials have long been studied for a variety of environmental applications, resource rescue, and many other conceivable applications. The present study reports on the synthesis of bismuth vanadate (BiVO4) integrated polyaniline (PANI) using the hydrothermal method. The topology of BiVO4 decked PANI catalysts was investigated by SEM and TEM. XRD, EDX, FT-IR, and antibacterial testing were used to examine the physicochemical and antibacterial properties of the samples, respectively. Microscopic images revealed that BiVO4@PANI are comprised of BiVO4 hollow cages made up of nanobeads that are uniformly dispersed across PANI tubes. The PL results confirm that the composite has the lowest electron-hole recombination compared to others samples. BiVO4@PANI composite photocatalysts demonstrated the maximum degradation efficiency compared to pure BiVO4 and PANI for rhodamine B dye. The probable antimicrobial and photocatalytic mechanisms of the BiVO4@PANI photocatalyst were proposed. The enhanced antibacterial and photocatalytic activity could be attributed to the high surface area and combined impact of PANI and BiVO4, which promoted the migration efficiency of photo-generated electron holes. These findings open up ways for the potential use of BiVO4@PANI in industries, environmental remediation, pharmaceutical and medical sectors. Nevertheless, biocompatibility for human tissues should be thoroughly examined to lead to future improvements in photocatalytic performance and increase antibacterial efficacy.

7.
Nanomaterials (Basel) ; 13(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36985895

RESUMO

Bacterial infections remain a serious and pervasive threat to human health. Bacterial antibiotic resistance, in particular, lowers treatment efficacy and increases mortality. The development of nanomaterials has made it possible to address issues in the biomedical, energy storage, and environmental fields. This paper reports the successful synthesis of CeO2-SnO2 composite nanofibers via an electrospinning method using polyacrylonitrile polymer. Scanning and transmission electron microscopy assessments showed that the average diameter of CeO2-SnO2 nanofibers was 170 nm. The result of photocatalytic degradation for methylene blue dye displayed enhanced efficiency of the CeO2-SnO2 composite. The addition of SnO2 to CeO2 resulted in the enhancement of the light absorption property and enriched charge transmission of photoinduced electron-hole duos, which conspicuously contributed to momentous photoactivity augmentation. Composite nanofibers exhibited higher specific capacitance which may be accredited to the synergism between CeO2 and SnO2 particles in nanofibers. Furthermore, antibacterial activity was screened against Escherichia coli and CeO2-SnO2 composite nanofibers depicted excellent activity. The findings of this work point to new possibilities as an electrode material in energy storage systems and as a visible-light-active photocatalyst for the purification of chemical and biological contaminants, which would substantially benefit environmental remediation processes.

8.
Biotechnol Bioeng ; 120(1): 22-40, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36169115

RESUMO

All the disciplines of science, especially biotechnology, have given continuous attention to the area of enzyme immobilization. However, the structural support made by material science intervention determines the performance of immobilized enzymes. Studies have proven that nanostructured supports can maintain better catalytic performance and improve immobilization efficiency. The recent trends in the application of nanofibers using natural polymers for enzyme immobilization have been addressed in this review article. A comprehensive survey about the immobilization strategies and their characteristics are highlighted. The natural polymers, e.g., chitin, chitosan, silk fibroin, gelatin, cellulose, and their blends with other synthetic polymers capable of immobilizing enzymes in their 1D nanofibrous form, are discussed. The multiple applications of enzymes immobilized on nanofibers in biocatalysis, biosensors, biofuels, antifouling, regenerative medicine, biomolecule degradation, etc.; some of these are discussed in this review article.


Assuntos
Técnicas Biossensoriais , Nanofibras , Enzimas Imobilizadas/metabolismo , Nanofibras/química , Polímeros/química , Biocatálise
9.
Nanomaterials (Basel) ; 12(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35957143

RESUMO

The current research intended to employ a facile and economical process, which is also ecofriendly to transform camel waste bones into novel heterostructure for cleansing of diverse waste waters. The bones of camel were utilized for preparation of hydroxyapatite by hydrothermal method. The prepared hydroxyapatite was applied to the synthesis of cerium oxide-hydroxyapatite coated with natural polymer chitosan (CS-HAP-CeO2) heterostructure. Being abundant natural polymer polysaccharide, chitosan possesses exceptional assets such as accessibility, economic price, hydrophilicity, biocompatibility as well as biodegradability, therefore style it as an outstanding adsorbent for removing colorant and other waste molecules form water. This heterostructure was characterized by various physicochemical processes such as XRD, SEM-EDX, TEM, and FT-IR. The CS-HAP-CeO2 was screened for adsorption of various industrially important dyes, viz., Brilliant blue (BB), Congo red (CR), Crystal violet (CV), Methylene blue (MB), Methyl orange (MO), and Rhodamine B (RB) which are collective pollutants of industrial waste waters. The CS-HAP-CeO2 demonstrated exceptional adsorption against CR dye. The adsorption/or removal efficiency ranges are BB (11.22%), CR (96%), CV (28.22%), MB (47.74%), MO (2.43%), and RB (58.89%) dyes. Moreover, this heterostructure showed excellent bacteriostatic potential for E. coli, that is liable for serious waterborne diseases. Interestingly, this work revealed that the incorporation of cerium oxide and chitosan into hydroxyapatite substantially strengthened antimicrobial and adsorption capabilities than those observed in virgin hydroxyapatite. Herein, we recycled the unwanted camel bones into a novel heterostructure, which assists to reduce water pollution, mainly caused by the dye industries.

10.
Nanomaterials (Basel) ; 12(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35630853

RESUMO

Environmental pollution, especially water pollution caused by dyes, heavy metal ions and biological pathogens, is a root cause of various lethal diseases in human-beings and animals. Water purification materials and treatment methods are overpriced. Consequently, there is an imperative outlook observance for cheap materials for the purification of wastewaters. In order to fill up the projected demand for clean water, the present study aimed to make use of cost-effective and environmentally friendly methods to convert bone-waste from animals such as cows into novel composites for the decontamination of water. The bone-waste of slaughtered cows from the Najran region of Saudi Arabia was collected and used for the synthesis of hydroxyapatite based on the thermal method. The synthesized hydroxyapatite (Ca10(PO4)6(OH)2) was utilized to prepare a manganese ferrite/hydroxyapatite composite. The nanocomposite was categorized by diverse sophisticated procedures, for instance XRD, FE-SEM, EDX, TEM, UV, PL and FT-IR. This composite possesses outstanding photocatalytic activity against methylene blue dye, which is a common pollutant from industrial wastes. Moreover, the synthesised composite revealed exceptional bacteriostatic commotion towards E. coli and S. aureus bacteria, which are accountable for acute waterborne infections. The outcome of this study demonstrated that the integration of manganese ferrite into hydroxyapatite significantly intensified both antimicrobial and photocatalytic actions when compared to the virgin hydroxyapatite.

11.
Nanomaterials (Basel) ; 12(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35214995

RESUMO

Cancer and microbial infections constitute a major burden and leading cause of death globally. The development of therapeutic compounds from natural products is considered a cornerstone in drug discovery. Therefore, in the present study, the ethanolic extract and the fractions of Dodonaea viscosa and Juniperus procera were evaluated for anticancer and antimicrobial activities. It was found that two fractions, JM and DC, exhibited promising anticancer and antimicrobial activities. The JM and DC fractions were further modified into ZnO nanocomposites, which were characterized by SEM, XRD, TGA, and EDX. It was noted that the synthesized nanocomposites displayed remarkable enhancement in cytotoxicity as well as antibacterial activity. Nanocomposite DC-ZnO NRs exhibited cytotoxicity with IC50 values of 16.4 ± 4 (HepG2) and 29.07 ± 2.7 µg/mL (HCT-116) and JM-ZnO NRs with IC50 values of 12.2 ± 10.27 (HepG2) and 24.1 ± 3.0 µg/mL (HCT-116). In addition, nanocomposites of DC (i.e., DC-ZnO NRs) and JM (i.e., JM-ZnO NRs) displayed excellent antimicrobial activity against Staphylococcus aureus with MICs of 2.5 and 1.25 µg/mL, respectively. Moreover, these fractions and nanocomposites were tested for cytotoxicity against normal fibroblasts and were found to be non-toxic. GC-MS analysis of the active fractions were also carried out to discover the possible phytochemicals that are responsible for these activities.

12.
Nanomaterials (Basel) ; 11(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34835731

RESUMO

This study was performed to appraise the biocompatibility of polyhedral oligomeric silsesquioxane (POSS)-grafted polyurethane (PU) nanocomposites as potential materials for muscle tissue renewal. POSS nanoparticles demonstrate effectual nucleation and cause noteworthy enhancement in mechanical and thermal steadiness as well as biocompatibility of resultant composites. Electrospun, well-aligned, POSS-grafted PU nanofibers were prepared. Physicochemical investigation was conducted using several experimental techniques, including scanning electron microscopy, energy dispersive X-ray spectroscopy, electron probe microanalysis, Fourier transform infrared spectroscopy, and X-ray diffraction pattern. Adding POSS molecules to PU did not influence the processability and morphology of the nanocomposite; however, we observed an obvious mean reduction in fiber diameter, which amplified specific areas of the POSS-grafted PU. Prospective biomedical uses of nanocomposite were also appraised for myoblast cell differentiation in vitro. Little is known about C2C12 cellular responses to PU, and there is no information regarding their interaction with POSS-grafted PU. The antimicrobial potential, anchorage, proliferation, communication, and differentiation of C2C12 on PU and POSS-grafted PU were investigated in this study. In conclusion, preliminary nanocomposites depicted superior cell adhesion due to the elevated free energy of POSS molecules and anti-inflammatory potential. These nanofibers were non-hazardous, and, as such, biomimetic scaffolds show high potential for cellular studies and muscle regeneration.

13.
Tissue Eng Regen Med ; 18(5): 787-795, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34132986

RESUMO

BACKGROUND: At present osteoporosis has come into view as a major health concern. Skeletal diseases typified by weak and fragile bones have imposed threats of fissure. Hydroxyapatite (HAP) is known to induce osteoblast like differentiation and provide mechanical strength, hence, used in bone tissue engineering; whereas, Nigella sativa has also demonstrated potential to treat bone and muscle diseases. This study was aimed to develop potential orthopedic scaffold exploiting natural resources of Saudi Arabia which can be used as prospective tissue engineering implant. METHODS: The bone scaffold was developed by grafting biogenic HAP with N. sativa essential oil. N. sativa was applied for boosting osteogenesis and to stimulate antimicrobial potential. Antimicrobial potential was investigated utilizing S. aureus bacteria. Spectroscopic and surface characters of N. sativa grafted HAP scaffolds were analyzed using Fourier-transform infrared spectroscopy, X-ray crystallography and Scanning electron microscopy. To ensure biocompatibility of scaffolds; we selected C2C12 cell-lines; best model to study mechanistic pathways related to osteoblasts and myoblasts differentiation. RESULTS: Grafting of HAP with N. sativa did not affect typical spherical silhouette of nanoparticles. Characteristically; protein loaded polynucleated myotubes are result of in vitro myogenesis of C2C12 myoblasts in squat serum environment. CONCLUSION: It is first study of unique combination of N. sativa and HAP scaffold as a possible candidate of implantation for skeletal muscles regeneration. Outcome of this finding revealed N. sativa grafted HAP enhance differentiation significantly over that of HAP. The proposed scaffold will be an economical natural material for hard and soft tissue engineering and will aid in curing skeletal muscle diseases. Our findings have implications for treatment of muscular/bone diseases.


Assuntos
Durapatita , Nigella sativa , Diferenciação Celular , Sinais (Psicologia) , Mioblastos , Staphylococcus aureus , Tecidos Suporte
14.
Saudi J Biol Sci ; 27(12): 3547-3552, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32837220

RESUMO

Severe Acute Respiratory Syndrome Coronavirus2 (SARS-CoV2) provoked alertness globally. Existing pandemic eruption of infections with SARS-CoV2 has been phrased as coronavirus disease 2019 (covid-19). Worldwide pneumonia outburst attributable to new SARS-CoV2 alleged to be originated in Wuhan city of China and has affectation of enormous danger regarding civic wellbeing. As of 11 March 2020, international death toll owing to outburst of new coronavirus was approximately 3,800, and about 110,000 have been declared as confirmed cases. The novel SARS-CoV2 demonstrated competence with respect to human to human communication; therefore depicted exponential intensification of cases. As of March 23, there are 374,513 collective cases of global infections; more than 16,350 deaths and number of recovered cases is 101,554. Now Europe has turn out into new epicenter of lethal coronavirus. More than one third of the covid 19 cases are currently outside China. Presently Italy is one of worst hit countries followed by Spain. The rapid global widespread of novel covid-19 viruses lead to World Health Organization (WHO) to declare outbreak as pandemic. Given to seriousness of present scenario an accurate and rapid classification of noxious pathogenic virus is important which will lend a hand in opting for best fitting drugs. The screening program will aid saving people's lives and help to put off the pandemic situation. The scientists and researchers should collaborate nationally and internationally to win the battle against novel covid-19. We aimed to represent covid 19 outburst scenario in general and Saudi Arabia in particular. This short review report very briefly highlights covid-19 syndromes; propagation; Middle East outburst, natural products as cure for viral diseases, probable psychosomatic effects, protective measures and Islamic wisdom. SARS-CoV2 is subsequent coronavirus outburst that perturbs Middle East, after SARS-CoV and MERS-CoV which has been originated in kingdom of Saudi Arabia in year 2002 and 2012 respectively. The report covers information and developments till 23rd of March 2020 on basis of current published data and studies published on different scientific web-pages.

15.
Z Naturforsch C J Biosci ; 73(7-8): 297-301, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30070090

RESUMO

The antibacterial activity of zinc oxide (ZnO) nanoflowers has been investigated and presented in this article. Classic three-dimensional nanoflowers have been prepared by hydrothermal method using zinc acetate dihydrate Zn(CH3COO)2·2H2O as the sole precursor. The X-ray diffraction and Fourier transform infrared spectra confirm the formation of ZnO crystals. Consequently, on the basis of morphological and chemical observations, the chemical reaction mechanism of ZnO nanoflowers was also proposed. Antibacterial activity was carried out against food-borne pathogen, Escherichia coli, which is ubiquitous in distribution among food-laden wastes. The experimental procedures for the antibacterial test included a spectroscopic method with different concentrations (5-20 µg/mL) of ZnO nanoflowers to unearth the minimum inhibitory concentration. Our investigation suggests that the lowest concentration of ZnO nanoflower solution that can hamper the growth of this microbial strain was 5 µg/mL.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Óxido de Zinco/síntese química , Óxido de Zinco/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Nanoestruturas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Óxido de Zinco/química
16.
Appl Biochem Biotechnol ; 186(3): 779-788, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29740796

RESUMO

At present, hydroxyapatite is being frequently used for diverse biomedical applications as it possesses excellent biocompatibility, osteoconductivity, and non-immunogenic characteristics. The aim of the present work was to recycle bone waste for synthesis of hydroxyapatite nanoparticles to be used as bone extracellular matrix. For this reason, we for the first time utilized bio-waste of cow bones of Albaha city. The residual bones were utilized for the extraction of natural bone precursor hydroxyapatite. A facile scientific technique has been used to synthesize hydroxyapatite nanoparticles through calcinations of wasted cow bones without further supplementation of chemicals/compounds. The obtained hydroxyapatite powder was ascertained using physicochemical techniques such as XRD, SEM, FTIR, and EDX. These analyses clearly show that hydroxyapatite from native cow bone wastes is biologically and physicochemically comparable to standard hydroxyapatite, commonly used for biomedical functions. The cell viability and proliferation over the prepared hydroxyapatite was confirmed with CCk-8 colorimetric assay. The morphology of the cells growing over the nano-hydroxyapatite shows that natural hydroxyapatite promotes cellular attachment and proliferation. Hence, the as-prepared nano-hydroxyapatite can be considered as cost-effective source of bone precursor hydroxyapatite for bone tissue engineering. Taking into account the projected demand for reliable bone implants, the present research work suggested using environment friendly methods to convert waste of Albaha city into nano-hydroxyapatite scaffolds. Therefore, besides being an initial step towards accomplishment of projected demands of bone implants in Saudi Arabia, our study will also help in reducing the environmental burden by recycling of bone wastes of Albaha city.


Assuntos
Osso e Ossos/química , Durapatita/química , Durapatita/síntese química , Nanopartículas/química , Resíduos Sólidos , Animais , Bovinos , Arábia Saudita
17.
Pharmacogn Mag ; 13(Suppl 1): S26-S32, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28479722

RESUMO

BACKGROUND: ellular damage initiated by reactive oxygen species (ROS) is the main cause of numerous severe diseases and therefore for this reason, the natural antioxidants have note worthy significance in human health. Capsaicin possesses noteworthy analgesic and anti-inflammatory properties. It also possesses healing effects for treatment of arthritis, diabetic neuropathy, gastric lesions, and cardiac excitability that is why it is incorporated in creams and gels. OBJECTIVE: The present study was carried out to estimate the in vitro antioxidant and ROS scavenging activities of capsaicin against muscle precursor cells. Till date, no investigation has been carried out to study the effect of capsaicin on myoblasts. MATERIALS AND METHODS: Herein, the cytotoxicity was induced by endotoxin lipopolysaccharide (LPS) to analyze the effect of capsaicin on LPS induced inflammation and apoptosis on muscle cells. To find out the toxicity of endotoxin, myoblasts were exposed to different concentrations of LPS, viability and morphology was checkedby the means of CCK-8 test and microscopy, respectively. Apoptotic cell death was examined by fluorescence staining. Additionally, LPS-induced apoptosis was determined by mRNAexpression of calpain, caspase-3 and tumor necrosisfactor alpha (TNF-α), and were quantified by qRT-PCR. RESULTS: The outcome of the presentstudy demonstrated that LPS stimulation generatestoxicity in dose-dependent manner. Pre-treatmentof myoblasts with capsaicin can considerably alleviate LPS-induced inflammation. CONCLUSION: In conclusion, this study indicates that dietetic supplementation of capsicum may help to alleviate/reduce the inflammatory effects and is therefore potent source of natural antioxidant agent which can be utilized to control muscle related diseases, such as myotube atrophy. SUMMARY: In the present study cytotoxicity was induced by LPS to analyze the effect of capsaicin on LPS induced inflammation and apoptosis on muscle cells.The results of this investigation demonstrated that LPS stimulation generates toxicity in dose dependent manner. Pre-treatment of myoblasts with capsaicin can considerably reduce LPS induced inflammation.It has been concluded on the basis of results that the dietetic supplementation of capsicum may help to minimize inflammatory effects and are potent sources of natural antioxidants which can be utilized to control muscle related diseases such as atrophy. Abbreviation used: AMP: Adenosine monophosphate, AO/EB: Acridine orange / Ethidium bromide, ATL: T-cell leukemi, CAP: Capsaicin, CCK-8: Cell counting Kit-8, CLSM: Laser Scanning Microscopy, DCF-DA: 2', 7'-dichlorofluorescein diacetate, DMEM: Dulbecco's modified Eagle's medium, DPPH: α, α-diphenyl-ß-picrylhydrazyl, FBS: Fetal bovine serum, KA: Kainic acid, LPS: Lipopolysaccharide, MDA: Malondialdehyde, NF-κB: Nuclear factor kgene binding, PBS: Phosphate buffer saline, pNA: p-nitroanilide, RNW: RNase free water, ROS: Reactive oxygen species, TNF-α: Tumor necrosis factor alpha, TRPV1: Transient receptor potential vanilloid 1.

18.
Appl Biochem Biotechnol ; 182(2): 624-634, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27914018

RESUMO

Pristine ß-sitosterol or in combination with other phytosterols is utilized in an array of enriched commercial foods. Considering the presence of ß-sitosterol in different functional foods and its potential role in prevention and cure of neurodegenerative diseases, the aims of our investigation were to encapsulate ß-sitosterol in nanofibers and to estimate influence of ß-sitosterol on proliferation of fibroblasts. Electrospun nanofibers have widely been used as scaffolds to mimic natural extracellular matrix. Herein, our group for the first time establishes an innovative scaffold based on ß-sitosterol and polyurethane using electrospinning. ß-Sitosterol promotes epithelialization and possesses anti-oxidant and anti-inflammatory activities, whereas polyurethane, besides possessing biomedical uses, also enhances epithelial growth. We optimized the concentration (5%) of ß-sitosterol in polyurethane to obtain homogenous solution, which can be spun without difficulty for the synthesis of ß-sitosterol amalgamated scaffold. The resulted twisted nanofibers have been characterized via scanning electron microscopy and Fourier transform infrared spectroscopy. The viability of cells on twisted scaffold was examined using NIH 3T3 fibroblasts as model cell line. Incorporation of ß-sitosterol in polyurethane changed the structure and size of nanofibers, and the twisted scaffolds were non-cytotoxic. Thus, the twisted nanoribbons, which contain anti-inflammatory ß-sitosterol, can be utilized as a promising future material, which will help to ease inflammation and also aid in wound healing. In conclusion, the outcome of the preliminary research evidently points out the potential of twisted scaffold in biomedical applications.


Assuntos
Técnicas Eletroquímicas , Teste de Materiais , Nanofibras/química , Transição de Fase , Poliuretanos/química , Sitosteroides/química , Animais , Camundongos , Células NIH 3T3
19.
J Food Sci Technol ; 52(7): 4600-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26139931

RESUMO

To prevent the development and spread of spoilage/pathogenic microorganisms via meat foodstuffs, antimicrobial nanocomposite packaging can serve as a potential alternative. The objective of this study was to develop a new class of antimicrobial hybrid packaging mat composed of biodegradable polyurethane supplemented with virgin olive oil and zinc oxide via electrospinning. Instead of mixing antimicrobial compounds directly with food, incorporation in packaging materials allows the functional effect at food surfaces where microbial activity is localized. The nanofibers were characterized by SEM, EDX, XRD and TEM. The antibacterial activity was tested against two common foodborne pathogens viz., Staphylococcus aureus and Salmonella typhimurium. The present results indicated that incorporation of olive oil in the polymer affected morphology of PU nanofibers and nanocomposite packaging were able to inhibit growth of pathogens. Thus; as-spun mat can be used as prospective antimicrobial packaging, which potentially reduces contamination of meat/meat-products. Moreover, introduced biodegradable packaging for meat products could serve to replace PVC films and simultaneously help to protect natural environment.

20.
Mol Biol Rep ; 42(8): 1281-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25813209

RESUMO

This investigation was under taken to explore probable mechanisms and signal pathways involved in cytotoxicity induced by bacterial endotoxin lipopolysaccharide (LPS). Herein, we selected muscle precursor C2C12 myoblasts as representative cells to test effect of calpain inhibitor 3-(4-iodophenyl)-2-mercapto-(Z)-2-propenoic acid (PD150606) on LPS induced inflammation and apoptosis. In order to rule out the toxicity of endotoxin, mouse myoblasts were exposed to various concentrations of LPS and viability of cells and morphology were assessed using CCK-8 assay and simple microscopy respectively. Apoptotic cell death was examined by fluorescence microscope at regular time intervals. Additionally, LPS induced apoptosis in C2C12 cells were determined by mRNA expression of µ-calpain, caspase-3 and tumor necrosis factor alpha (TNF-α) and were quantified by qRT-PCR. Our results point out that LPS stimulation produced dose dependent toxicity in muscle precursor cells. Pre-treatment with a calpain inhibitor can significantly attenuate LPS-induced inflammation/apoptosis. Results of present research determined that mRNA expression of aforesaid genes was amplified (p<0.05) in LPS stimulated C2C12 cells, whereas a noticeable drop off in mRNA expression of these genes was observed when pre-exposed with calpain inhibitor PD150606. Our study has outlined the current understanding regarding the connection between µ-calpain and caspase-3 in skeletal muscle wasting and as a result provides suitable choice for designing promising chemotherapeutic system for muscle illness and atrophy.


Assuntos
Acrilatos/farmacologia , Citotoxinas/toxicidade , Glicoproteínas/farmacologia , Lipopolissacarídeos/toxicidade , Mioblastos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Inflamação , Camundongos , Modelos Biológicos , Mioblastos/fisiologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...